Dark matter search at B factories

Chaehyun Yu (Academia Sinica)

in collaboration with T.C.Yuan(Academia Sinica)

Exploring the dark sector, KIAS, Mar. 16, 2015

Outline

- Introduction
- Dark matter search at the LHC

(See the talk by Patrick Fox this Friday.)

- Dark matter search at B factories
- Summary

Properties of DM

- Dark matter exists (galactic rotation curve, gravitational lensing, CMB,...)
- from PLANCK observation, DM is about 26.8% of our universe
- productions
 - thermal: WIMP,...
 - non-thermal: axion,...
- stability of dark matter
 - long-living: $\tau \ge \tau_{\rm uni} \sim 10^{26-30} {\rm s}$
 - absolutely stable by (dark) symmetry

escape detectors at colliders!

• all the observation is by gravitational interaction, but can have interaction other than gravity. \implies A popular scenario is WIMP.

Probe of WIMP hypothesis

- indirect detection
 - dark matter annihilation in sun, Galactic Center, satellites, etc.

- direct detection
 - measure nuclear recoil from scattering against nuclei

- collider search
 - dark matter production at the LHC

Direct detection of Dark Matter

Direct detection of Dark Matter

Direct detection of Dark Matter

Indirect detection of Dark Matter

FERMI-LAT

IceCube

Collider signatures of dark matter

• MSSM, UED,

 any SM particle(s) possible. jet(s), γ, W, Z, t, tt,...

Effective operators

Dirac fermion

Complex, real scalars

Name	Operator	Coefficient
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_{\bullet}^3
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3
D3	$\bar{\chi}\chi q\gamma^{\mathtt{s}}q$	im_q/M_{ullet}^3
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_{ullet}^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_{\star}^2$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_{\star}^2$
$\mathbf{D7}$	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{\star}^2$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{\star}^2$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_{\star}^2$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_{st}^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu\nu}\bar{G}^{\mu\nu}$	$i\alpha_s/4M_\star^3$
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_{\star}^3$

Goodman	et al.,	arXiv:1	008.	1783
---------	---------	---------	------	------

Name	Operator	Coefficient
C1	$\chi^{\dagger}\chi \bar{q}q$	m_q/M_{\bullet}^2
C2	$\chi^\dagger \chi \bar{q} \gamma^5 q$	im_q/M_{\star}^2
C3	$\chi^\dagger \partial_\mu \chi \bar q \gamma^\mu q$	$1/M_{\star}^2$
C4	$\chi^{\dagger}\partial_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}q$	$1/M_{\star}^2$
C5	$\chi^\dagger \chi G_{\mu\nu} G^{\mu\nu}$	$\alpha_{s}/4M_{\star}^{2}$
C6	$\chi^\dagger \chi G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/4M_{\star}^2$
R1	$\chi^2 \bar{q} q$	$m_q/2M_{\star}^2$
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_{\star}^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_\star^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_{\star}^2$

10

Monojet

 $pp \rightarrow jet + E_T$

irreducible backgrounds

 $pp \rightarrow jet + Z(Z \rightarrow v\overline{v})$

• backgrounds coming from events where particles are missed or misidentified.

 $pp \rightarrow jet + W(W \rightarrow l\nu)$

Monojet

• a gluonic current has the strongest bound.

scalar interaction
 has a suppression
 factor due to the light
 quark mass.

CMS, arXiv:1408.3583

CMS, arXiv:1410.8812

Mono-W/Mono-Z

16

Mono-ttbar

Lower limits on M. (GeV)

Mono-top

Flavor-dependent U(1)' model

Charge assignment : SM fermions

Ko,Omura,Yu, JHEP1201,147

cannot generate mass terms for right-handed up-type quarks

Flavor-dependent U(1)' model

Charge assignment : Higgs fields

Ko,Omura,Yu, JHEP1201,147

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	U(1)'
H_1	1	2	1/2	$-q_L - u_1$
H_2	1	2	1/2	$-q_L - u_2$
H_3	1	2	1/2	$-q_L - u_3$
Φ	1	1	1	$-q_{\Phi}$

 introduce three Higgs doublets charged under U(1)' in addition to H uncharged under U(1)'.

$$V_{y} = y_{i1}^{u} H_{1} \overline{U_{1}} Q_{i} + y_{i2}^{u} H_{2} \overline{U_{2}} Q_{i} + y_{i3}^{u} H_{3} \overline{U_{3}} Q_{i}$$
$$+ y_{ij}^{d} \overline{D_{j}} Q_{i} i \tau_{2} H^{\dagger}$$
$$+ y_{ij}^{e} \overline{E_{j}} L_{i} i \tau_{2} H^{\dagger} + y_{ij}^{n} H \overline{N_{j}} L_{i}.$$

• The U(1)' is spontaneously broken by U(1)' charged complex scalar Φ .

Anomaly Cancelation

• Anomaly cancelation requires extra fermions: SU(2) doublets

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	U(1)'		
Q'	3	2	1/6	$-(q_1 + q_2 + q_3)$		
D'_R	3	1	-1/3	$-(d_1+d_2+d_3)$		
U_R'	3	1	2/3	$-(u_1+u_2+u_3)$	_	one extra generation
L'	1	2	-1/2	0		•
E'	1	1	-1	0		
l_{L1}	1	2	-1/2	Q_L		
l_{R1}	1	2	-1/2	Q_R		vector-like
l_{L2}	1	2	-1/2	$-Q_L$		pairs
l_{R2}	1	2	-1/2	$-Q_R$		

a candidate for CDM

Flavor-dependent U(1)' model

• 2 Higgs doublet model : $(u_1, u_2, u_3) = (0, 0, 1)$

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$	U(1)'
H	1	2	1/2	0
H_3	1	2	1/2	1
Φ	1	1	1	q_{Φ}

$$V_{y} = y_{i1}^{u} \overline{Q_{i}} \widetilde{H} U_{R1} + y_{i2}^{u} \overline{Q_{i}} \widetilde{H} U_{Rj} + y_{i3}^{u} \overline{Q_{i}} \widetilde{H_{3}} U_{Rj} + y_{ij}^{d} \overline{Q_{i}} H D_{Rj} + y_{ij}^{e} \overline{L_{i}} H \overline{E_{j}} + y_{ij}^{n} \overline{L_{i}} \widetilde{H} N_{j}.$$

$$V_h = Y_{ij}^u \overline{\hat{U}_{Li}} \hat{U}_{Rj} \hat{h}_0 + Y_{ij}^d \overline{\hat{D}_{Li}} \hat{D}_{Rj} \hat{h}_0,$$

$$Y_{ij}^{u} = \frac{m_{i}^{u} \cos \alpha}{v \cos \beta} \delta_{ij} + \frac{2m_{i}^{u}}{v \sin 2\beta} (g_{R}^{u})_{ij} \sin(\alpha - \beta),$$

$$Y_{ij}^{d} = \frac{m_{i}^{d} \cos \alpha}{v \cos \beta} \delta_{ij},$$
 \propto the fermion mass

Flavor-dependent U(1)' model

Gauge coupling in the flavor eigenstates

$$\mathcal{L}_{Z'f\bar{f}} = g'Z'_{\mu} \left[q_i \overline{U_L^i} \gamma^{\mu} U_L^i + q_i \overline{D_L^i} \gamma^{\mu} D_L^i + u_i \overline{U_R^i} \gamma^{\mu} U_R^i + d_i \overline{D_R^i} \gamma^{\mu} D_R^i \right]$$

- The 3 X 3 coupling matrix g_R^u is defined by

 $(g_R^u)_{ij} = (U_R^u)_{ik} u (U_R^u)_{kj}^{\dagger}$ biunitary matrix diagonalizing the up-type quark mass matrix

- Gauge coupling in the mass eigenstates
- Z' interacts only with the right-handed up-type quarks

$$g' Z'_{\mu} \underbrace{(g_L^u)_{ij} \hat{U}_L^i \gamma^{\mu} \hat{U}_L^j}_{\sim 0 \text{ or } \delta_{ij}} \underbrace{\hat{D}_L^i \gamma^{\mu} \hat{D}_L^j}_{\scriptstyle I} \underbrace{(g_R^u)_{ij} \hat{U}_R^i \gamma^{\mu} \hat{U}_R^j}_{\scriptstyle I} \underbrace{(g_R^u)_{ij} \hat{U}_R^i \gamma^{\mu} \hat{U}_R^j}_{\scriptstyle I} \underbrace{(g_R^u)_{ij} \hat{D}_R^i \gamma^{\mu} \hat{D}_R^j}_{\scriptstyle I} \underbrace{\hat{D}_R^i \gamma^{\mu} \hat{D}_R^i \hat{D}_R^j}_{\scriptstyle I} \underbrace{\hat{D}_R^i \gamma^{\mu} \hat{D}_R^j}_{\scriptstyle I} \underbrace{\hat{D}_R^i$$

 \implies topphilic DM?

Dark matter search at B factories

- fixed CM energy $\sqrt{s} = 10.58 \text{ GeV}$
- relatively free from unitarity or validity of EFT.
- clean signal and low background.
- sensitive to light DM \lesssim 5 GeV.
- in principle, possible to distinguish charmphilic or bottomphilic dark matter.
- already about 1ab⁻¹ data were accumulated at Belle and BABAR.
- BELLE II will start to accumulate data soon.

Dark photon search at B factories

• general idea: kinetic mixing between γ and A' ~ $\frac{1}{2} \epsilon F_{\mu\nu}^{Y} F'^{\mu\nu}$

Fayet, PLB95, 285 (1980);NPB187, 184(1981)

Holdom, 1986

 $e^+e^- \rightarrow \gamma A' \rightarrow \gamma e^+e^-, \gamma \mu^+\mu^-, prompt$

Annihilation of light DM

• from the observation of Fermi-LAT of dwarf spheroidal galaxies

- the photon energy threshold~1 GeV
- below 5 GeV, bounds weaken due to the photon energy threshold and threshold for ccbar.
- below 4 GeV, the final state energy becomes close to the hadronization scale.
- CMB also constrains s-wave annihilation at recombination.

Y(3S) decay

• $\Upsilon(3S) \rightarrow \pi^+ \pi^- \Upsilon(1S)$ with $\Upsilon(1S) \rightarrow$ invisible

Υ (3S) decay

Fernandez, Kumar, Seong, Stengel, arXiv:1404.6599

Association production of DM with H

H=heavy quarkonium $-Q\bar{Q}$ bound state

$$\begin{array}{cccc} {}^{2S+1}L_J \ {}^{1}S_0 \ {}^{3}S_1 \\ c\bar{c} & \eta_c \ J/\psi \\ b\bar{b} & \eta_b \ \Upsilon \\ J^{PC} \ 0^{-+} \ 1^{--} \end{array}$$

 $e^+e^- \rightarrow H(J/\psi,\eta_c,...) + E_T$

Association production of DM with H

SM backgrounds

1. Irreducible backgrounds

2. Background coming from events where particles are missed.

$$e^+e^- \rightarrow H + W^+W^-(W^+W^- \rightarrow l^+\nu l^-\overline{\nu})$$

$$\Rightarrow$$
negligible

SM backgrounds: $e^+e^- \rightarrow Hv\overline{v}$

1. Diagrams with one weak boson propagator

2. Diagrams with two weak boson propagators

SM backgrounds: $e^+e^- \rightarrow Hv\overline{v}$

 $e^+e^- \rightarrow J/\psi + \chi \overline{\chi}$

Preliminary

 $e^+e^- \rightarrow \eta_c + \chi \overline{\chi}$

 $d_5 = \frac{1}{M_*^2} \,\overline{\chi} \gamma^{\mu} \chi \overline{q} \gamma_{\mu} q$

 $d_9 = \frac{1}{M_*^2} \overline{\chi} \sigma^{\mu\nu} \chi \overline{q} \sigma_{\mu\nu} \gamma^5 q$

Preliminary

 $e^+e^- \rightarrow J/\psi + \chi \overline{\chi}$

 $d_1 = \frac{m_c}{M_*^3} \,\overline{\chi} \chi \overline{q} q$

 $d_{7} = \frac{1}{M_{\star}^{2}} \overline{\chi} \gamma^{\mu} \gamma^{5} \chi \overline{q} \gamma_{\mu} \gamma^{5} q$

 $\frac{S}{\sqrt{B}} \ge 5$ Preliminary

 $e^+e^- \rightarrow \eta_c + \chi \overline{\chi}$

 $S=\mathcal{L}\times\sigma\geq 1$

Preliminary

 $e^+e^- \rightarrow \eta_c + \chi \overline{\chi}$

 $d_5 = \frac{1}{M_*^2} \overline{\chi} \gamma^{\mu} \chi \overline{q} \gamma_{\mu} q$

Preliminary

Summary

- Many evidences for dark matter, but it has not discovered yet.
- Dark matter search at colliders would have an important role in discovering dark matter or constraining it.
- Dark matter search at B factories would provide complementary search for dark matter, in particular, in the light dark matter mass region.
- A light dark matter might be in tension with astrophysical observations like CMB.
- Future study: dark matter association production with a heavy quarkonium at the LHC.

Fermi-LAT Pass 8

B.Anderson, 5th Fermi Symposium

 Υ (3S) decay

Fernandez, Kumar, Seong, Stengel, arXiv:1404.6599

LHC reach and relic density

